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TAO

Definition (Webster) Chinese (Beijing) dào, 1736.

1. The process of nature by which all things change and which is
to be followed for a life of harmony.

2. Toolkit for advanced optimization

Mantra

Design and implementation of algorithms and component-based
software for the solution of large-scale optimization applications
on high-performance architectures.

� Component-based interaction

� Leverage of existing parallel computing infrastructure

� Reuse of external (preconditioners, linear solvers . . . ) toolkits



TAO: New Developments and Future Plans

New Developments

� Release of Version 1.3

� ESI interface (compliance with Trilinos)

� Development of BLMVM

� Nonlinear complementarity solvers

� TAO/CCA demo at SC2000
(www.mcs.anl.gov/cca/cca_demos.html)

Future Plans

� Nonlinear least squares solvers

� Integration of TAO into MPQC and NWChem

� Use of automatic differentiation tools (ADIC) in TAO

www.mcs.anl.gov/cca/cca_demos.html


TAO Performance of BLMVM: Plate Problem

Cray T3E (NERSC)

n = 2.56 · 106 variables
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TAO: CCA Interactions

Application
Initialization

Application Driver

TAO Optimization Solvers 

Post-
Processing

Linear Solvers

TAO codeUser code Interface to external 
linear algebra tools

MatricesVectors Index Sets

Function and Derivative 
Evaluation



TAO

www.mcs.anl.gov/tao
Version 1.3 (December 2001)

� Source Code

� Documentation

� Installation instructions

� Tutorials (NERSC, September 2000)

� Example problems

� Performance results

� Supported architectures

http://www.mcs.anl.gov/tao
http://www.mcs.anl.gov/tao/docs
http://www-unix.mcs.anl.gov/tao/src/bound/examples/exercises/main.htm


Optimal Control Problems

The optimal control problem requires minimizing

fc[tl, x(tl), tu, x(tu)]

subject to the state equations,

x′(t) = f [t, x(t), u(t)], t ∈ [tl, tu],

boundary conditions on the states, and the control constraints,

u(t) ∈ U, t ∈ [tl, tu].

Note. The solution is bang-bang if for some interval I,

u(t) ∈ ∂U, t ∈ I



The COPS Benchmarks

COPS has optimal control and parameter estimation problems,
with descriptions of the formulations as optimization problems and
numerical results for several optimization solvers.

� Robot arm

� Particle steering

� Goddard rocket

� Hang glider

� Marine population dynamics

� Flow in a channel

� Methanol to hydrocarbons

� Isomerization of α-pinene

http://www-unix.mcs.anl.gov/~more/cops
http://www-unix.mcs.anl.gov/~more/cops/bcops/glider.html
http://www-unix.mcs.anl.gov/~more/cops/bcops/pinene.html


Optimal Control: Computational Issues

� The optimization approach is relatively recent

� The optimization approach overcomes many of the difficulties
from the Pontryagin maximum principle

� The optimization approach applies to sliding and chattering
controls.

� Algorithms have a wide range in performance possibly due to
the lack of good initial guesses.

� The number of iterations of current optimization algorithms is
mesh dependent.

� Techniques for dealing with the lack of smoothness in the state
and the control are ad-hoc.



Example: Minimal Surface with Obstacles

Number of active constraints depends on the height of the obstacle.
The solution v /∈ C1. Almost all multipliers are zero.

Note. See Bank, Gill, and Marcia (2001) for numerical results with
an interior point method.



Benchmark Problems

� Variational problems with bounds on the control

� Convex problems

� Unique solutions

� Five different problems

� Three different choices of parameters per problem

� Cost per variable is constant

� Target problems with 105 variables

Goal. Develop algorithms with bounded cost per grid point



Grid Sequencing Issues

� How much does grid-sequencing save?

� Does grid-sequencing resolve the convergence issue?

� What is the order of convergence of f(x∗
h)?

� What is the order of convergence of x∗
h?

� How does the number of active constraints at xh change?

� What tolerance do we use to obtain xh?

� What is the impact on iterative methods on these results?



Grid-Sequencing Performance

Time improvement ratios for TRON (n = 101, 761)



Grid-Sequencing Performance

Number of iteration for TRON, levels 5, 6, 7.



Order of convergence for f(x∗
h)

The order of convergence is defined as the p > 0 such that

f(x∗
h) ∼ f(x∗) + αhp, h → 0

where h = 1/n and n is the number of variables.



Order of convergence for x∗
h

The order of convergence is defined as the p > 0 such that

‖x∗
h‖2 ∼ ‖x∗‖2 + αhp, h → 0

where h = 1/n and n is the number of variables.


